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FOREWORD

This report covers the second phase of the work carried out under Contract AF 61(052)-339.

The first phase was reported in the following Technical Notes and Publications: -

TN I (AFOSR TN 60- 711), November 1960, "Buckling of Circular Conical Shells Under Axisym-

metric External Pressure" (Published in Journal of Mechanical Engineering Science, Vol. 3,

No. 4, December 1961).

TN 2 (AFOSR TN 60- 860), December 1960, "The Effect of Axial Constraint on the Instability of

Thin Conical Shells under External Pressure" (Published in Journal of Applied Mechanics,

Vol. 29, No. 1, March 1962).

TN 3 July 1961, "Buckling of Thin Circular Conical Shells Subjected to Axisymmetrical Tempera-

ture Distributions and External Pressure".

TN 4 September 1961, "The Effect of Axial Constraint on the Instability of Thin Circular Cylindri-

cal Shells under Uniform Axial Compression" (Published in International Journal of Mechani-

cal Sciences, Vol. 4, No. 2, 1962).

TN 5 December 1961, "A Donnell type Theory for Bending and Buckling of Orthotropic Conical

Shells".

"Experimental Investigations of the Instability of Conical Shells under External Pressure".

Bulletin of the Research Council of Israel, Vol. II C, No. 1, April 1962.
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S U M M A R Y

A method developed previously for the analysis of the instability of thin conical shells under ex-

ternal pressure is now extended to buckling under torsion and combined torsion and external or internal

pressure as well as axisymmetric temperature distributions. The method is based on solution of modi-

fied Donnell type stability equations, in the presence of slightly relaxed boundary conditions for the u

and v displacements. Two formulations of the solution for torsion and combined loadings are given

and compared. Typical examples are calculated and compared with results obtained by Seide, and in-

teraction curves for combined torsion and external pressure loading are given. For conical shells of

small and medium taper ratio, the interaction curves may be approximated by the semi-empirical curve

of Crate, Batdorf and Baab for cylindrical shells, but for large taper ratio different curves are obtained.

The results of a continuation of an experimental program on the instability of thin truncated coni-

cal shells under uniform external pressure, carried out at the Department of Aeronautical Engineering,

are presented and discussed. The tests of 33 steel, Alclad, and aluminum alloy conical shells of vary-

ing geometries are desqribed, and the results are compared and correlated with other experimental in-

vestigations and with theory. The test results reverify the theories of Singer and of Seide. The buck-

ling and postbuckling behaviour and the effect of initial out-of-roundness are discussed.

The results of another experimental program on the instability of thin truncated conical shells in

torsion and under the combined loading of external pressure and torsion are given, and compared with

the theories of Section 1. Good agreement was obtained between theory and experiments.

The method of analysis of Section 1 is adapted to analyse the asymmetric buckling of thin coni-

cal shells under uniform axial compression. A linear theory is used and typical cases are computed and

compared with an axisymmetric analysis.
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a - distance of the top of a truncated cone from the vertex, along a generator

(see Fig. 1).

A, B, C, D - complex expressions defined by Eqs. (1.46), (1.47), (1.48), and (1.49).

An, B., C., D., E., Fn - displacement coefficients defined by Eq. (1.13).

A0 - initial out-of-roundness.

bp, cq - coefficients defined by Eqs. [3] of Ref. 16.

C - pressure coefficient - (p/E) [12 (1- 2 )/r 2] (l/h) 2(p /h)
OV

E - modulus of elasticity.

F, (n) etc. G1 (n,m) etc.

K, (n) etc. - algebraic expressions involving /3, y, t and sina.

h - thickness of shell.

H, J, K, L, M, N, P, Q,
R, T, - algebraic expressions involving/3, y, t and sin a defined by

Eqs. (1.26) to (1.35).

H - height of cone lcosa.

H2 , H2  - differential operators defined by Eqs. (1.5) and (1.10).

Jk (nm), JP (n,m), Iq (n,m)- algebraic expressions defined by Eqs. [48], [28] and [29] of Ref. 16.

k, - spring constant of the elastic supports in the axial direction.

k - spring constant of the elastic supports in the circumferential direction.

K - 12 (1--v 2 ) (a/h)

- slant length of cone.
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LI - differential operator defined by Eq. (1.6).

La - differential operator defined by Eq. (1.7).

La - differential operator defined by Eq. (1.8).

m - integer.

n - integer.

n. M number of circumferential waves observed in experiment.

n, - number of circumferential waves predicted by theory.

N - number of terms of solution.

p - hydrostatic pressure.

P, - pressure parameter defined by Eq. [77] of Ref. 1.

PC. - critical pressure.

PO - measured pressure at onset of buckling.

Pt  - measured pressure when fully b,,ckled.

Pbp - buckling pressure, the higher value of p0 or p,.

pthl = theoretical critical pressure, Singer (Ref. 1).

psh2 - theoretical critical pressure, Seide (Ref. 18).

pth - theoretical critical pressure, Niordson (Ref. 26).

pP - measured pressure at complete plastic collapse.

p - axial force.

Q (n,m), R (n,m), S (n,m) - algebraic expressions defined by Eqs. (1.55), (1.57) and (4.11).
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r - complex number = y + imf

RI = Radius of small end of truncated cone.

R 2- Radius of large end of truncated cone.

a = complex number = y + in/

t - number of circumferential waves.

T = torque.

T - torque of equivalent cylindrical shell.

TI = temperature parameter defined by Eq. [11 of Ref. 16.

U, V - algebraic expressions, involving A, y, t, n and sina defined by Eqs.

(1.41) and (1.42).

U* = displacement along a generator.

u - non-dimensional displacement along a generator = u*/a.

v* - circumferential displacement.

v = non-dimensional circumferential displacement = v*/a.

w* - radial displacement.

w - non-dimensional radial displacement - w*/a.

X* - axial co-ordinate, along a generator.

x = non-dimensional axial co-ordinate = x*/a.

x 2= ratio of the distance of the bottom of a truncated cone from the vertex,

to that of the top.
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geometrical shell parameter - (1 - P22 (/p)

aw

a = cone angle.

= (V/1go x2 ) (see Eq. (1.19)).

y = (1 - v)/2 (see Eq. (1.20)).

M axial compression parameter = (P/E) (K 4/2nfh a sina cos a).

4

-= pressure parameter = K (p/E) (a/h) tan a.

A0  - pressure parameter for zero torque.

- torque parameter = (K 4/E) (T/a 2 h 2 i sin 2 a).

/Ao - torque parameter for zero pressure.

V = Poisson's ratio.

p = mean radius of curvature = (R1 + R2)/2 cos a.
a,

S,~ o, r- membrane stresses of prebuckling state.

* = edge stresses due to elastic restraint.

= circumferential co-ordinate.

Subscripts following a comma indicate differentiation.
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INTRODUCTION

In Ref. 1 a method was developed for the analysis of the instability of conical shells under ex-

ternal pressure.

The method is based on a solution of the Donnell type stability equations, derived by Seide

(Ref. 2 and 3), and rederived in a modified form to facilitate solution by the Galerkin method, in the

presence of slightly relaxed boundary conditions. The solution satisfies the usual simple support con-

ditions regarding the radial deflections, w, rigorously, but implies elastic restraints as far as the

axial and circumferential displacements are concerned. However, the constraint on the circumferential,

v, displacements is of such a nature that it practically represents the rigid fixation required by the

usual simple supports; and the much weaker constraint on the axial, u, displacements (in the direc-

tion of the generators) combines with the very small u displacements themselves to a condition ap-

proximating freedom from axial restraint. The effect of the u restraint on the instability of cylindri-

cal and conical shells under external pressure was previously investigated and the critical pressures

found to differ by 1-2 percent for typical shells. (Ref. 4 and 5). For the case of instability under

torsion, the effect of overall axial constraint was investigated by Donnell (Ref. 6) for cylindrical shells,

and found to be negligible. Batdorf (Ref. 7), who compared results calculated under the customary

simple support assumptions u 0, v - 0 with those of Leggett (Ref. 8), for u - o, v - o, also found

close agreement indicating the unimportance of axial constraint.

The method of Ref. I is now applied to investigate buckling of thin truncated conical shells

under combined torsion and axisymmetrical external or internal pressure.

The problem of buckling of thin conical shells in pure torsion was first treated by Pfluger (Ref.

9), but the solution given there is valid only for shells with small cone angle. Seide (Ref. 10) obtain-

ed a rmore accurate solution which is not restricted to small cone angles. Though the boundary condi-

tions of the present analysis are slightly different to those of Ref. 10, Seide's solution is used for

comparison in the limiting case of zero pressure.

DIFFERENTIAL EQUATIONS, BOUNDARY CONDITIONS AND SOLUTION

The stability equations for a thin conical shell of Refs. 2 and 3 can be written in non-dimension-



&l form, as in Ref. 1,

(x/sin' a) H2 (xu) = cot a [L (w) - L,(w)] (1.)

(/sina a) H. (xv) - cot a LS (w) (1.2)

and

B2 t(x/j in2 a) H2 (w) - (K4/E) I x3 a w.. + j (x/sin 2 a) w

+ x2 w + 2. [ (x2/sin a) w - (x/sin a) w, 31+ K 4 cos 2 a (x 3  ). = 0 (1.3)

where u, v, and w are the additional displacements caused by buckling

4 2
K4 12 (1 - V2) (a/h) (1.4)

The operator H2 is defined as

H2 (z) xsina(xsinaz.). +z. xxoo+xsina(zq,/xsina).x

+ (z, /x' sin a) + 2(z,00/xf) - x sin (sin az.,/x).. (1.5)

and L1  La and L. are further operators defined as

L (z) = Iv( -x)x-( l+0 [x'z +xz. + (W/sin a) z -z] (1.6)

LA(Z) = (1/sin' a) ((1 + v) (xz), - (3+v)z 1 (1.7)

L(z) = (1/sina)[(2+v)x0z,, +3xz. +z +(1/sinaa) z,'0,0, (1.8)

To facilitate solution by the Galerkin method, Eq. 4.3) can be rederived in a modified form as in

Ref. 1.
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(I/x 2 sin 2 a) H2 (w) - K (a/E) W... + ( /E) [(I/x2 sin 2 a) w

+ (l/x) w] + 2 (F /E) [(1/x sin a) W. - (/x2 sin a) w, ] (1.9)

+ (1/x1 ) K' -C02aH211cos 2 a H2  [(xs w wx), ] 1 0

-1
where 112 is an inverse operator defined by

H2 [H2 1 (z)] = z (1.10)

The modified equation, Eq. (1.9), has the advantage that it actually represents the radial

equilibrium of the forces on an element of the shell, and not a higher order derivative of it. Hence

one has no doubt that its Galerkin solution is an upper bound, whereas with Eq. (1.3) this could

not be stated with certainty.

The boundary conditions for the buckling displacements for a circular truncated cone which

is supported in a manner approximating the conventional simple supports are:

w . 0 at X . lx2 (1.11)

and

w + (V/x) w at x - 1,x2 (1.12)

Instead of the usual requirements that v = 0 and u Is unrestrained at the end sections, it is here

assumed that the displacements in the u and v directions are resisted by elastic supports, as

will be shown in detail later.

The solution of Ref. I is now extended in a manner suggested by Batdorf for cylindrical -shells

(Ref. 7). Two formulations of the solution apply to buckling of conical shells in torsion:



u = Zm[sinto "1 A x'+costo E x']n~l,80., n =2,4,..".

v = Zm[cost $YX B x" + sin F x']
n=1,3.., n24,... .

w - Z m[sinto .1 C x'+costo I D x'] (l.13a)
n24 ,....

or

u -Zm [sin t o A x8 + cos t Y E x']
ni n n-2=2

v Zm [cos t 9 B x' + sin to I F x']

n=1 n=2

where C., D and t are real, (t is the number of circumferential waves of the buckling deforma-

tion), s is the complex number

a = y+ing (14.1)

n is an integer and the symbol ' m indicates the imaginary part of the solution.

Restrictions have to be imposed on n, in Eqs. (I.13a) or (I.13b), as shown, since only an

asymmetric deflection function can represent the torsional displacement. The complete series,

Eqs. (I. 13a) with no restrictions on n, or Eqs. (l.13b) commencing from n = 1 in both terms of

each function, do not represent a possible torsional displacement, because then the two terms of

each function would be equal, with no preference for the sin to or ,cos toS term. In Batdorf's

formulation for cylindrical shells (Eq. [16] of Ref. 7 or Eq. [6] of Ref. 11) no similar restrictions

were necessary, as they are automatically introduced by the orthogonality relations. However,

FlUgge (Ref. 12) introduces restrictions similar to those. of Eqs. (1.13a) in his solution for
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cylindrical shells as reasonable and advisable.

In practice, finite series replace Eqs. (1.13a) and (113b). In the first formulation n varies

from 1 to N for the first terms of Eqs. (1.13a) and from 2 to N ± 1 for the second terms. In the

second formulation n varies from 1 to N or N- 1 for the first terms of Eqs. (1.13b) and 2 to

N for the second terms. It should be noted that for pure torsion loading, the first formulation con-

verges more rapidly, but the second formulation is more general and applies also to combined load-

ings.

It may be pointed out that some alternative series may be written instead of Eqs. (1.13b) for

the second formulation, since the essential quality is the asymmetry introduced. For example, n

could commence at I for both terms, leaving out any one term of the first or second group to intro-

duce the asymmetry. However, the form of Eqs. (l.13b)is most the orderly and convenient one, and

for finite series, the other forms yield either identical results or results which differ only slightly ;

though one can arrange sometimes special forms which converge more rapidly, if one remembers that

the terms of Eqs. (1.13a) are the most important ones for the buckling in torsion.

Now, if the complex functions, whose imaginary parts represent the assumed solution, Eqs.

(I.13a) or (L.13b), satisfy the differential equations, Eqs. (1.1) and (1.2), the equations will also be

satisfied by the imaginary parts. Substitution of the complex functions of Eqs. (I.13a) or (1.13b) in-

to Eqs. (1.1) and (1.2) yields, therefore

cos a sin a (s - 1) Et2 + (a + 1) (Vs - I) sin 2 a]
A t4 -l2 t 2 (•3 + 1) Sin2 S + (s2 - 1)2 in .. . C (1.15)

B -t cos a It 2 - sin2  I s2 (2+)+5 (1-')+ 1II (1.16)

t'-2t2 ( 1 + 1) sin2 a + ( s 2- 1) sin 4 a

and similarly

E cos a sin a (s- 1) (t 2 (a + 1) (vs- 1) sin 2 a] D (1.17)

0- 2tt2 (2 + 1) sin l a + (s 2 - 1)2 sin 4 a
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F n tCos a It' -sin a [ a2 (2+0)+ s(1-v)+l]II DU(.8

t 4 - 2t 2 (S2 + 1) sin 2 a+(s 2 
- 1)2 sin4 a (

To ensure compliance with the boundary conditions Eqs. (1.11) and (1.12), one has to define 19

as

= n/lg x2  (1.19)

and y as

v = (1-v)/2  (1.20)

as in Ref. 1.

EFFECT OF ELASTIC RESTRAINT

The axial and circumferential displacements do not vanish, but the edges are assumed to be

elastically restrained. It is assumed that the elastic restraints come into action only at the onset

of buckling. The displacements prior to buckling are not restrained, and the stress prior to buckling,

does therefore not include any elastic restraint. As a result of the assumed buckling displacements

Eqs. (1.13) restraining stresses o* and r* appear in the elastic supports.

a* - [E/(-v2) ][u + W/x sin a) (v +usina-wcosa)]

- E sinacosa m E x6- I (s-1)[t2 - (s+ 1) sin' all [C sintO+Ducosto]
U [t4- 2t 2 (82 + 1) sin2 a + (s2 1)2 sin4 a]

(1.21)

and



* =f C[E/2 (I + 0)] [v.. - (I/x sin a) (v sin a - u,)

- Etcostq0cosa ' m x S' (s - 1) sin a Cacosto-D uinto]
[t4_ 2t2 (82 + 1) sin2 a + (s2 _ ) n4 a]

(1.22)

The spring constants of the elastic supports can now be defined as

k -*/a, and k - r/av (1.23)

Substitutions yield for x 1 1, x2

I cos(nPlg x) [(MQ-PN)/(M2 + N2)] (C. sint.0+D cos to)

- (E/ax) 2 2 (1.24)
I cos (nolgx) [(MT-RN)/(M + N )] (C. sint9 + Dacosto)

and

2 1 cos (n lgx) [(M j-HN)/(M2 + N2)] (C cos to - D sin to)

I .E Bil 2) 2 (1.25)
aX x cos (n 1gx) [(ML -KN)/ (M 4 N2)] (Ca cos to- D. sin to)

where

M - - 2t0 (y' - n'f6a + 1) sin 2 a + [(n 2 / Y 4 y' n' I sin'a (1.26)

N = 4yn [(y- n'f 1) s in z a- t ] sin 2 a (1.27)

P - [y(y -I) - nl,62t + y [3n'j9 - y + 1] sin' a (1.28)

Q = nN [2Y- 1)t2 + (n'02  - 3y'+ 1) sin',a] (1.29)

R - (y-1) t" +[(-2y'+y" +y' -y+1)+(6y'-3y+1 ) nz pa]sin"a (1.30)

T - n 91t' +[(- 6 y + 3ya -1) - (-2y) n'0 2] sin' a 1 (1.31)
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H = y'y' + (-- 3y) n'32 (1.32)

J - no (3y' - 2yn 1 Z (1.33)

K = t2- [(- 2
y

3 + 5y 2 + 1) - (3 - 2y) n2192] sin 2 a (1.34)

L = -no (2 - y) 4y sin2 a (1.35)

It should be noted that the spring constants k and k have the dimensions of stress per

inch (psi per inch), and that the restrictions on the values n imposed in Eqs. (1.13a) and (i.13b)

apply to all the expressions.

To obtain an estimate of the order of magnitude of the spring constants, the first approxima-

tion (the solution with the smallest number of terms) suffices. For both formulations this is the

solution with n = 1 in the first terms of Eqs. (1.13) and n = 2 in the second terms.

The typical shells of the following dimensions are considered for the purpose of this estimate

(see Fig. 2):

(a) a= 300 (b) a = 40'

a 57.59" a = 7.78"

x2  1.5 x2= 2.5

h = 0.1" h = 0.0158'

Taking v = 0.3 and n = I and 2, in accordance with the restrictions of Eqs. (1.13a) and

(1.13b), one obtains at x = I (where the largest values occur) the following mean values of the

spring constants :

S H E L L (a) (b)

k./E - 0.0059 - 0.0420

kv/E - 2.63 - 4.55

At x = x2 , tile spring constants are (l/x2) times the above values.
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It should be noted that the spring constants computed from Eqs. (1.24) and (1.25) are functions

of S , which go to infinity wherever u or v vanishes. The reason for this behaviour is the fact

that the restraints introduced by the solution are not physical springs, and yield finite restraining

forces even at points of vanishing displacements. Since however at such points no work is done by

those forces, the analysis is not affected. The mean integrated effects of the restraints do behave

as springs (though negative ones) and therefore the mean spring coefficients are considered.

As for external pressure, the spring constants in the circumferential direction, k, , are very

large, and hence the solution approaches the realistic condition of vanishing circumferential displace-

ment (v - 0) at the supported ends. The spring constants in the axial direction, ku , although about

1/100 of k, , are still large, while the usual conditions of simple supports (no restraint on u) would

be approximated by a small spring constant. However, since the u displacements are much smaller

that the w displacements the restraining axial forces will be small, although ku is of consider-

able magnitude. Note that k is negative. Hence the solution introduces a negative elastic restraint

which would tend to reduce the stiffness of the shell. The order of magnitude of the spring coefficients

is the same as for external pressure. Shell (b) has larger spring coefficients than the typical shells

investigated in Ref. 1. However, from Ref. 5, the effect is secn to be less than 4% even for such

"strong" springs.

It seems reasonable to assume that the effect of axial constraint on the instability in torsion

should be even less than that under external pressure loading. Hence tie effect of the springs can be

neglected as in Ref. 1.

BUCKLING UNDER UNIFORM HYDROSTATIC EXTERNAL

OR INTERNAL PRESSURE AND TORSION

The basic equilibrium conditions of the conical shell yield the following relations for the mem-

brane stresses in the case of external or internal hydrostatic pressure loading and torsion.
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T. (p/2) (a/h) x tan a (1.36)

T p (a/h) x tana (1.37)

F T/a 2 h 2n x2 sin2 a (1.38)

In Eqs. (1.36) and (1.37) the minus sign is for external pressure loading and the plus sign for

internal pressure.

If it is assumed that the boundary conditions come into action only after the prebuckling stress

state has been established, these stresses satisfy the equilibrium conditions exactly. If the bounda-

ry conditions are taken into account, additional bending stresses appear, which however are signifi-

cant only in the neighbourhood of the supports.

Assuming now that for the buckling analysis the prebuckling stress is represented satisfactorily

by Eqs. (1.36) to (1.38), the modified third stability equation, Eq. (1.9), becomes

(1/x2 sin2 a) H2 (w) t K' (p/E) (a/h) tan a [(x/2) w + (l/x sin2 a) w + (l/x) w1Z]

-2 (K4/E) (T/a 2 h 2w sin 2 a)C (l/x3 sin a) w - (l/x sin a) w ] (1.39)

+ (l/x3) K' co 2 aH 2'[xe I ,+ ( / ) 4 C O S 2  a H 2 1 [ ( X 3 w , x ) , x ] - 0

The buckling load is obtained from the requirement that the solution proposed in Eq. (1.13) must

satisfy Eq. (1.39), this requirement leads to

Zim I IC. sint¢{x.-4 s (s-2)2 
- 2(t 2 /sin2 a) [(- 1)2 + ] + (t'/sin' a)I

+ K' (p/E) (a/h) tan a x" -  I a (3 + 1)/2] - (t2/sin 2 a) l

+1 cos 2 a x-2 (U2 + V2 )-l s2 (g2_ 1) (U_ iV)

- cos to [(K4/E) (T/a 2 h 2w sin 2 a) x' - 4 2(t/sin a) (a-
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+ D. [cos t txs- 4 Isa'2 (s-2)' - 2(tO/sin2 a) [(s- 1)2 + 11 + (t4 /sin' a) I

+ K4 (p/E) (a/h) tan a x' - ' I [s (s + 1)/2] - (t 2
/sin

2 a) I

+X4 cos 2 a xf_ 2 (U2 + V2)- 1 82 (82 _ 1) (U _ i V)

+ sin to I (K'/E) (T/a 2 h 2. sin 2 a) x ' 2(t/sin a) (a - 1)] (1.40)

where

U = sinaa (ys -1 )s - 2 (3 ys - 1)9af3 + n''] - 2t (y' + I-na a ) + (t 4/sln'a) (1.41)

V = 4yn p [sin'a (yz- -n"3)-.t ] (1.42)

and the summation must be carried out over all integral values of n, in accordance with the restric-

tions of Eqs. (I.13a) or (I.13b).

Equation (1.40) will be evaluated by the Galerkin method. The left hand side of the equation

will be multiplied once by !m x' sin to] x sin a dx do and once by Zm[x'cos t95] x sinadx dS6,

and the products will be integrated from 1 to x2 and from 0 to 2w, where

r - y+ im3 (1.43)

and m is an integer.

Two sets of Galerkin integrals are obtained
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f2f sin2 tq0sina j 2 
1 X sin (m)9lgx) C ICos(n/81gx) [x ) 1m (A)

+ x - m (B) + x ' im (C)] + sin (n P Igx) Cx )-4 91(A)

+ x )- (B ) + 2- x C

+D Icoo (nlgx)[xY-4 1m(D)I+sin(n lgx)[x Y 4 N(D) ] It xdxdO = 0 (1.44)

and

f f cos 2 t~sina fX2 I Xy sin (mpIgx) D Icos(n igx) [x '-4 m(A)
0 1 a

+ xy-2m (B) + x ' Zm (C) ] + sin (n P lgx) [xY-4 N (A)

y-2 M(B ) ),y - 1 31(C)lI

+ C I cos (ni lgx) [xY '4 m(D)] + sin (n/ Pigx) [(x'-4 M(D)I1 xdxd4 =0

where, as in Ref. 1,

A = a (-2) - 2(t /sina a) ((a -1)' +1] +(t/ain'a) (1.46)

B ,= Kcoa a(U, +V,)- sa(a -1) (U -iV) (1.47)

C - ± K4 (p/E) (a/h) tanal [-(a + 1)/2] -(t/in" a) 1 (1.48)

and

D - (K4/E) (T/a 2 h 2n sin 2 a) 2(t/sin a) (a-1) (1.49)

After integration and some manipulations, Eqs. (1.44) and (1.45) become
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[C X[(-1)m , 2y-_I G I(n, m)+K 4 [2)n+n 2yX- -1G nm o~[-) x 2 -1] G2 (n,m)

4 n+ 2y. 2

SK [ )(-1) x2 - 1] G3 (n, m) (p/E) (a/h) tan a i+ rn[-)+n 2y-2 (nm( /)Tah

+Dx 2 - I G, (n, m) (K4/E) (T/a 2 h 27r sin 2 a) 0 (1.50)

D 4-n x 2  - G1 (n,m)+K cos 2 a[( 1) x2 -1] G2 (n,m)

4 r+n 2y+2

K [(-1) X2 - 1] G. (n,m) (p/E) (a/h) tan al

-C (1),+ " x2 )- 2 
- I I4 (n,m) (K4 /E) (T/a 2 h 2ff sin 2 a) = 0 (1.51)

The symbols G (n, m) denote values of G functions for a particular n and m. The functions

GI, C;2 and G are given by Eqs. (64), (65) and (66) of Ref. 1 (see also Appendix A) and

m+ n m-n
G, (n,m) = K1 (n) [ 2 + 2 2

4fy- 1)2 + (m + n)2  4 (y - 1)2 +(m-n)

+ r 1 2 2'(1.52)1 1

+ K2 (n) 4 1)2 (y- 1)2+
mn(m+n)

2
) 4 1 n 1 2

ere

2

K, (n) -= 2 (ntp/~sin a) (1.53)

K2 (n) - 4 (y- 1)2 (t/sin a) (1.54)

Note that in Eqs. (1.50) and (1.51) the sign of the third term is plus for external pressure and minus

for internal pressure.

For a fixed value of m, Eqs. (1.50) and (1.51) are linear equations in terms of the coefficients

C* and D. The load terms also appear linearly in the equations. If m is allowed to vary in the



same way as n, the critical value of the torque for a given external or internal pressure, or the critic-

al external preasure for a given torque, can be calculated from the vanishing of the determinant whose

elements are the multipliers of the coefficients C. and D

If one writes

Q (n, M) - [(-1 X12 _II -lG,(n, m) +K 4coos2a[ 1),+ x, 2-1 G2 (z)

2 -1] 28 ( )(.5

where X is a pressure parameter defined by

A . K 4(jP/E) (a/1) tana (.6

R (n, m) x: p (-) 2  - 1] G4 (n. M) (1.57)

where pu is a torque parameter defined by

p (K 4/E) (T/a 2 h 2 w sin 2 a) - (K 4/E) r (1.58)

the following linear equations are obtained:

In the first formulation, Eqs. (1.13a),

Q (1,I) C1 + Q(3, 1) CS i,. . . + Q(N,1) CN + R(2,1) D2 + R(4,1) D4 + . .. + R(N± 1,l1)DN±1 -

Q(l,3) C1 +Q(3,3) CS +.. . +Q (N,3) CN + R(2,3) D 2 +R(4,3) D4 + . .. + R (N 1,3) DN±l=O

O(1,N) C I + Q (3,N) CS + *. . .+ Q (N,N) CN + R (2,N) D 2 + R (4,Ni) D 4 + . .. + R(N±l,N) DN±I ' 0
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-R(1,2) C1 - R(3,2) CS - - R(N,2) CN + Q(2,2) D2 + Q(4#2) D4 +.. + Q(N±1,2) DN±l = 0

-R(1,4) C1 - R(3,4) CA - - R(N,4) CN + Q(2,4) D2 + Q(4,4) D4 +... + Q(N±1,4) DNf±l = 0

-R(I,N±I)C -R(3,N±)C,-... -R(N,N±I)CN + Q(2,N±I)D 2 + Q(4,N±I)D 4+... +Q(N±I,N±I)DN±-0

(1.59)

and in the second formulation, Eqs. (1.13b),

Q (II) C1 + Q (2,1) C +. + Q (N,I) Cy + R (2,1) D2 + R (3,1)D +. . + R (N,I) D = 0

Q (1,2) CI + Q (2,2) C 2  + Q (N,2) CN + R (2,2) D2 + R (3,2) DS +.. R (N,2) DN -0

o (1,N) CI + Q (2,N) C2 + .. , + Q(N,N) CN + R(2,N) D2 + R(3,N) DS +... + R (N,N) DN - 0

-R (1,2)Cl- R(2,2)C 2 -... R(N,2) CN + Q(2,2) D2 + Q (3,2) D8 +.. + Q (N,2) DN = 0

-R (1,3)C1 - R(2,3)C 2 -... - R (N,3)CN + Q(2,3) D2 + Q (3,3) D3 +... + 0 (N,3) DN - 0

-R (1,N)C 1- R(2,N)Cl-...-R(N,N)CN +Q(2,N)D2+Q(3,N)D, +...+Q(N,N)DN =0 (1.60)

For any given pressure, the lowest eigenvalue u of the determinant of the coefficients of C and

D. of Eqs. (1.59) or (1.60) yields the critical torque. For any given torque the lowest eigenvalue A

of that determinant yields the critical external pressure. It should be noted that the value of t (the
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number of circumferential waves into which the shell buckles) which "minimizes" the critical load has

to be used.

It may be noted that the determinant of the coefficients of Eqs. (1.59) can be obtained directly

from these equations, which result when m varies in the same manner as n; or from a larger set,

which appears when m is allowed to take all values from one to N (or N + 1), after rearranging of

rows and columns as in Ref. 11.

TABLE 1
Critical Shear Stress for Torsion Alone

S h e I (a) (b) (c)

a 300 400 400

x2  1.5 2.5 6.35

0 0.333 0.6 0.843

a 57.59 in. 7.78 in 3.06 in

h 0.1 in. 0.0158 in 0.0158 in

p 0.3 0.3 0.33

Order Critical Maximum Shear Stress (r /E) x 106

of With With With With With With

Determinant Eqs. (1.13a) Eqs.(1.13b) Eqs.(1.13a) Egs.(1.13b) Eqs.(l.13a) Fqs.(1.13b)

2 915 915 683 683 2325 2325

3 743 914 548 680 1808 2298

4 735 910

5 732 742 539 545 1735 1780

6 737

7 731

8 728

9 727 540 1540

Approx. Critical
Stress 722 520 1520

(Seide, Ref. 10)

The critical torques, i;, ie case of pure torsion loading, and the corresponding critical shear
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stresses, were calculated with both formulations, Eqs. (1.13a) and (1.13b), for the typical shells of

Fig. 2. The maximum critical shear stresses rm a. r. are tabulated in Table 1, and are compared

with the approximate formula of Ref. 10. The results indicate rapid convergence.

As in the case of buckling under external pessure, convergence is slower for longer or shallower

shells, i.e. those with larger taper ratio (VO. For shell (a), a typical short shell, a 3 x 3 stability de-

terminant of the first formulation - Eqs. (1.13a), or a 5 x 5 determinant of the second formulation -

Eqs. (1.13b), yields a critical shear stress which is only about 2.5% too high. For shell (b), a typical

medium shell, a 3 x 3 determinant of the first formulation, or a 5 x 5 determinant of the second formula-

tion, yields a critical shear stress which is about 4.5% too high. For shell (c), a typical long shell of

large taper ratio, determinants of similar order yield critical stresses about 17% and 15.5% too high,

respectively. The first formulation, Eqs. (l.13a), is indeed superior for pure torsion loading. However,

for longer and shallower shells, of larger tAper ratio, for which the buckling deformation differs consid-

ably from that of cylindrical shells (see Section 3 of this report, or Ref. 19 for experimental evidence),

the second formulation improves the solution considerably for the same range of n, though with higher

order determinants.

For practical purposes, a 3 term solution, with n taking values up to 3, which corresponds to a

3 x 3 stability determinant in the first formulation or a 5 x 5 one in the second one, suffices unless the

taper ratio 0& of the shell is large.

The critical shear stresses obtained from higher order determinants are practically identical to

those obtained by the method of Ref. 10, though Seide's boundary conditions differ slightly. Similar

agreement was found in the case of external pressure (see Ref. 1). The corresponding critical torsion

ratios (T/T cos 2 a) are also plotted in Fig. 22.

The maximum critical shear stress in the presence of external pressure is then calculated for the

same typical shells. The ratio of critical shear stress to that for pure torsion are tabulated in Table 2.

The second approximation and then a solution obtained with a 7th or 9th order determinant are given.

The second formulation, Eqs. (l.13b), is used here. The results are also compared with a semi-empiri-

cal interaction formula obtained by Crate, Batdorf, and Baab (Ref. 13) for cylindrical shells under com-

bined internal pressure and torsion, which was confirmed by the theoretical analysis of Hopkins and

Brown (Ref. 14), and was recon firmed also for combined external pressure and torsion, both theoretically
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and experimentally, by Suer and Harris (Ref. 15). This formula can be written

(,/X o ) + (,I/Ito)2 = 1 (1.61)

where X0 and 110 are the critical pressure parameter for zero torque and the critical torque parameter

for zero pressure, respectively.

TABLE 2

Critical Shear Stress Ratio for Torsion and Uniform External or Internal Pressure

rer. /rcr. torsion alone or (14 0 )

She Order of EXTERNAL PRESSURE 0S___h _ e _____ 2 Determinant o7 1 .00

(a) 300 1.5 1.0 0.827 0.646 0.440 0

7 1.0 0.866 0.713 0.504 0

3 1.0 0.832 0.650 0.436 0

(b) 400 2.5 7 1.0 0.874 0.725 0.526 0

9 1.0 0.735 0

3 1.0 0.861 0.709 0.490 0
7 1.0 0.903 0.815 0.711 0

Semi-Empirical Interaction formula of Ref. 13. 1.0 0.865 0.707 0.500 0

The computations and interaction curves can easily be extended to internal pressures. Such

calculations are in progress now.

The results are plotted in Fig. 3. For cones with small or medium taper ratio, whose buckling

behaviour is similar to that of cylindrical shells, the interaction curves are also very similar. For

shell (a) the curve is practically identical to the semi-empirical formula of Ref. 13, Eq. (1.61), and

for shell (b) it differs only slightly (by about 2.57, for X/X0 = 0.5 with a 7 x 7 determinant). A sample

calculation with a 9 x 9 determinant indicated a slightly larger difference (47 at the same point). The

typical shell of large taper ratio, shell (c), whose buckling behaviour differs considerably from that of
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a cylindrical shell (see for example Fig. 19 and Fig. 23), exhibits also an entirely different interaction

curve (for example, p/po is about 14% higher than that for a cylindrical shell at -k/X0 = 0.25).

More extensive computations are required to establish a set of reliable interaction curves for

conical shells, but the present calculations demonstrate clearly that for external pressure use of Eq.

(1.61) for conical shells will result in conservative estimates, especially so for (a) shell of large

taper ratio. It should be noted,however, that preliminary calculations have shown that this is not the

case for internal pressure !

BUCKLING UNDER LATERAL PRESSURE VARYING IN THE AXIAL DIRECTION,

AXISYMMETRICAL TEMPERATURE DISTRIBUTIONS AND TORSION

Since the above analysis is linear, it may be extended to include other loadings which can be

expected to have buckling displacements represented by Eqs. (1. 13). If the more general second

formulation of Eqs. (1.!3b) is considered, the analysis applies to combined loadings of lateral pressure

varying in the axial direction, thermal stresses caused by axisymmetrical temperature distributions and

torsion. One has only to modify the load terms in Eqs. (1.60) in an appropriate manner, i.e. to replace

o (n,m) of Eq. (1.55) by

Q (n,m) - [( )n x2 y 2 -1] G (n,m) i K cos 2 a [(-) x2 - 1] G2 (n, m)
212 2

4 m t n 2)'+kt_ K (Pl/lE) (a/h1) an a ik~n m (- ) 2  -

+(K /E) T I Y b Jt (n,m)I(-1) X2 " H

min 2y+q
+Y c J (n,,) [(-1) x 2 -11 (1.62)q .O q q X2

Where p, and Jk are given by Eqs. [77] and [94] of Ref. I (or Eqs. [451 and [481 of Ref. 16), and TI,

b , c q, p and Iq are given by Fqs. []], [3], [281 and [29] of Ref. 16 respectively.
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SECTION 2

EXPERIMENTAL INVESTIGATION OF THE BUCKLING OF CONICAL

SHELLS UNDER UNIFORM HYDROSTATIC PRESSURE

Josef Singer and Abraham Eckcstein
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INTRODUCTIO N

In Ref. 17 the results of an experimental investigation of the instability of thin truncated conical

shells under uniform external pressure, carried out at the Technion, were reported. Test of 71 shells

made of a weldable aluminum alloy were described and correlated with the theoretical analysis of

Refs. 1 and 18, and also compared with other experimental investigations (Refs. 19-21). The theoret-

ical analyses were verified in general by the test results, though there was considerable scatter. Care-

ful analysis of the causes of scatter however indicated a better fit of the theoretical curve than was

at first apparent.

In order to investigate further some of the causes of scatter, and in order to consolidate the ex-

perimental verification of the theory, two additional series of tests were carried out: One with butt-

welded stainless steel specimens (and a few butt-welded aluminumi alloy cones), and one with bonded

(lap-jointed) alclad specimens.

33 truncated cones tested under uniform external pressure covering the (p /h) range (mean
&V

radius of curvature to thickness ratios) 240-725.

TEST APPARATUS AND PROCEDURE

The test rig used in the earlier investigation (Ref. 17) is also employed here. It is shown in Fig.

3 and 4, after it has been adapted for combined torsion and external pressure loading, and is described

in Section 3. The rig for external pressure loading consists of: a pressure vessel with end fixtures

for the specimens, a pressurizing system, which in the present tests is throttied air from a central com-

pressed air supply, and a pressure measuring system. The latter includes a head of mercury (or of

alcohol, for lower pressures) as well as a sensitive Statham pressure gage (which records via an un-

bonded strain gage). With this duplication, continuous calibration of the Statham gage during the test

is possible, while utilizing its sensitivity.

As in earlier tests (Ref. 17), simple support conditions are approached as far as possible. The

end fittings here have a circular profile and the outer rings have 0-seals at the contact line, so that the
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rotation of the generators is only slightly restrained, see Fig. 4. The top and bottom fixtures are simi-

lar. The displacement along the generators is restrained by the friction of the seal and inner ring, but

the ends are free to move axially as a whole. Since the effect of restraint along the generators on the

buckling pressure is very small (see Ref. 5), while restraint of edge rotation has a significant effect

on it, the test boundary conditions appear to be a fair approximation to the theoretical simple support

conditions

w =0

v =0
at top and bottom

u # 0 (N =0) end fixtures (2.1)

and w + (P/x) w = 0

The second series of tests confirm this very clearly, as discussed in detail below.

The test procedure was similar to that employed in the earlier tests, except that the visual in-

dication disc (Fig. 4 of Ref. 17) was not used in most of the present tests. The out-of-roundness was

measured, with a dial gage mounted on a rotary arm (see Fig. 6), at a radius slightly larger than the

mean, where the maximum buckling deflection was expected. For some cones these measurements were

also taken at two or three radii and compared. The out-of-roundness measurements were mapped for all

specimens (see for example Figs. 7 and 8). ' he out-of-roundness A0 was then computed by Holt's

method (Ref. 22, or method (d) of Ref. 23, or method (c) of Ref. 24). A0 is given in Table 5.

As the pressure is increased gradually in the test, the Statham pressure gage is recalibrated

against the mercury or alcohol head. The actual buckling pressures are, however, read on the poten-

tiometer activated by the more sensitive Statham gage, and translated into pressure with the aid of the

new calibration curve obtained during the test.

Three values of buckling pressure are recorded in each test : (1) The onset of buckling,

(2) complete buckling, and (3) plastic collapse. The onset of buckling is the formation of the first

true buckling wave, as distinct from the initial waviness which increases gradually with increase in

pressure. This gradual increase in initial waviness is an equilibrium phenomenon, which only near
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the critical load transforms into an instability phenomenon (usually with a "puck"). The onset of buck-

ling is indicated by a loud "puck", accompanied by a small pressure drop.

The transition, with slow increase in pressure, from the first wave to the fully buckled condition

is either gradual, the waves appearing one after the other (or in pairs) along the circumference each

with a "puck", or it is sudden, the waves appearing along the entire circumference si-

multaneously with a large "puck". In many of the "good" specimens, with small out-of-roundness, the

onset of buckling brought out all the lobes and represented therefore also complete buckling.

After the shell is fully buckled, the pressure is released and the test repeated, unless consider-

able plastic deformations are observed. In the second series (Alclad specimens), after two or three re-

petitons of the test, the upper end fixture is tightened to obtain partial clamping, and the test is repeat-

ed with the changed boundary conditions.

All the tests are continued into the plastic regime, and finally the plastic collapse pressure is

recorded.

Since the standard tolerances for the thin gage sheet, of which the cones were made, permit thick-

ness variations of up to ± 10% in a batch of the same nominal size, the thickness of the cones was

again accurately measured. Thickness measurements were taken at 25 points for each specimen and

averaged. The results indicated very small variations (of the order of - 0.01 - 0.02 mm) in the thick-

ness of each specimen, but slightly larger variations of thickness between specimens (up to ± 0.03 mm).

Hence for some specimens the nominal thickness had to be corrected accordingly.

TEST SPECIMENS

In order to extend the range of geometrical parameters covered, the taper ratios of the specimens

of the present tests were chosen to differ from those of Ref. 17. The geometries and the numbering of

the specimens are summarized in Table 3. It should be noted, that the external pressure tests do not

cover all the geometries given in the table, since some were tested only in torsion or under combined

loading of torsion and external pressure (see Section 3).
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TAB LE 3
Geometries and Numbering of Specimens

Taper Ratio Serial Numbers

/P (mm*) H =-(RI/R2) Stainless Steel' Z IOCNT18
- m (" AG5 - X 5161Aluminum Alloy

2.52 463 50 0.843 311 31330

1.49 330 127 0.600 317 3190

1.74 319 50 0.843 411 413 414*40

1.02 227 127 0.600 416 417 419*

Alclad 2024-T3

2.52 463 50 0.843 321
30

1.49 330 127 0.600 327 328

1.74 319 50 0.843 421 422
40

1.02 227 127 0.600 426

aeFor all specimens R2  317.5 mm. Nominal h(M) 0.4 0.6 0.8 1.0
2Thickness I _ I _ I_ I_

The test cones of the first series were made of annealed stainless steel Z 10 CNT 18 (a French

specification of a non-heat-treatable stainless steel similar to the American 18-8 - 321). Some of the

specimens of this series were made of a weldable aluminum alloy AG5 - X 516 (a French specification

roughly similar to the American 5052). The specimens of the second series were made of 2024-T3

Alclad. The typical properties of these materials are given in Table 4.

TABLE 4

Mechanical Properties of Materials

Material Stainless Steel Aluminum Alloy Al c I ad

Specification Z 10 CN'F 18 AGS - X 516 2024 - T3

F (psi) 27.0 x 106 10.3 - 106 10.6 x 106

1 0.3 0.3 0.33

Oyield (psi) 33000 )n600 39000

CUTS (psi) 78000 43000 59000
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Typical specimens are shown in Figs. 9 and 10. As in the earlier investigations (Ref. 17), the

specimens are fairly large, and were made by standard aircraft methods (described in Re f. 17) at the

Israel Aviation Industries, Lod. For the first series of cones, butt-welded joints were employed in the

aim to approach uniform shells as far as possible, and the type of steel was chosen on account of its

excellent weldability. Argon welding was employed, and extreme care resulted in very uniform welds.

However, some slight waviness still remained near the weld, nearly of the same order as occurred in

the earlier aluminum alloy specimens (of Ref. 17). Though the measured initial out-of-roundness was

not worse, and usually even better, than for the tests of Ref. 17, the initial test results for the steel

cones were on the average much below those for the aluminum alloy specimens of the earlier investiga-

tions. Residual welding stresses were suspected to be the main cause of this reduction. Hence though

the annealed Z 10 CNT 18 is basically non-heat treatable, stress relief heat-treatment to 550'C, and

at a later stage to 990'C, was attempted, but without success, as can be seen from Table 5. Unrelated

tests on the same material carried out at the same time by the metallurgical department of the Israel

Aviation Industries, showed later that effective stress relief can be obtained only when the residual

stresses are near the yield stress of the steel.

Theoretical results on the marked inferiority of stringers as stiffeners for cylindrical shells against

general instability under external 'pressure (Ref. 25), initiated a review of the earlier dismissal of lap

joints on account of their local stiffening effect. Since fairly strong stringers, distributed evenly around

the circumference of a shell, were found to have raised the critical pressure only by a few percent, it

was concluded that for buckling under external pressure the stiffening of a lap joint is entirely negligible.

The second series of specimens was therefore made with an adhesive bonded lap joint. In the absence of

weldability restrictions, a material with a relatively high yield stress, as appropriate for elastic buck-

ling tests, could be chosen. Alclad 2024-'3 was used, and the shells were joined by an Fpon-Versamid

bond, with a very thin fibre-glass inter-surface mat to improve adhesion.

RESULTS AND BUCKLING BEHAVIOUR

The geometry of the conical shells, the test results and the corresponding theoretical estimates
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are given in Tables 5 and 6. The geometrical data includes also the initial out-of-roundness A0

measured after the specimen has been secured in the end fixtures, and for convenience the thickness

is given also in inches. As in Ref. 17, the measured pressures at onset of buckling p0 , when the

shell is fully buckled P, , and at complete plastic collapse p are given; and for comparison the

theoretical values obtained by the methods of Niordson (Ref. 26), Seide (Ref. 18) and Singer (Ref. 1),

follow. As discussed in Ref. 1, though different boundary conditions are assumed in the analyses of

Refs. I and 18, their results differ only slightly.

The buckling behaviour of the two series of tests is basically similar. One noticeable difference

is the practically instantaneous transition of the elastic buckling waves to plastic deformation, which

is caused by the lower yield stress of the steel (and AG5 aluminum alloy) cones; or more precisely,

by their higher ratios of elastic buckling stress to yield stress. For specimens which are perfect, the

maximum theoretical buckling stress varies between 5.3% to 17.8% of the yield stress for the first series,

whereas for the 2024-T3 Alclad specimens of the second series the theoretical critical stress is only

between 1.7% to 6.3% of the yield stress. Hence, even without initial imperfections, not very large am-

plitudes of buckling waves are necessary in the thicker shells to reach the yield stress, though the

buckling phenomenon itself was entirely elastic. Indeed, only when the buckling stress was a very

small fraction of the yield stress, as in the case of the thinnest 2024-T3 Alclad shells (Specimens 321

and 421, for which the maximum theoretical 0erit" is 1.7% and 2.1% respectively of ayi.ld) could the

pressure be arrested in time to ensure entirely elastic behaviour. The tests for these specimens could

be repeated consistently a number of times on the same cone (see Table 6), while even for the thinnest

steel cones consistent repetition was difficult (though occasionally very nearly achieved, for example

with specimen 416/1).

The buckling behaviour of all the shells can be broadly divided into two groups : one, usually

shells having pronounced local initial dimples, in which the pressure had to be increased considerably

after onset of buckling to bring the shell to the fully buckled state; and one, consisting mainly of

shells having small out-of-roundness, in which the maximum -buckling pressure was reached already at

the onset of buckling, coinciding sometimes actually with the fully buckled state, or developing then

into the fully buckled state at a lower pressure. The complete plastic collapse, characterized by the
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typical "folding" of buckles (see Figs. 12 and 14) and accompanied by a large pressure drop, occurred

finally in both groups always at a much higher pressure.

As in Ref. 17, the buckling pressure from the point of view of the designer (as emphasized by

Hoff, Ref. 27), being the maximum pressure which the shell can carry without noticeable plastic defor-

mation, is considered. Here, this is the pressure when the shell is fulljk buckled pf (see Figs. 11 and

13), or the pressure at the onset of buckling p0 , whichever is greater, and it is designated here

the buckling pressure Pb . Though it may seem logical to compare the critical pressure, obtained by

the small deflection analyses of Refs. 1, 18 or 26 with the experimental values for onset of buckling,

it was found in Ref. 17 that the onset of buckling is too sensitive to initial imperfections of the speci-

men to be a useful criterion. In Tables 5 and 6, p0/Pth is also given, but the comparison of p, with

theory is a better indication of the reliability of the theory. Hence in Figs. 14- 16, Pb is presented.

As far as can be judged from the reports (Refs. 19 to 21, 28), most previous experimental investiga-

tions also recorded p, and not p 0 . For example, Magula (Ref. 28) calls Pb - p, the "initial buckling

pressure", while in one of his tests the first wave appeared at a p0 , being 33%0 lower, which is not

considered. It may also be noted, that recent experimental work on cylindrical shells (see for example

Ref. 29) also records buckling loads in the sense defined above and not the onset of buckling.

In Figs. 14 to 16 the ratio of buckling pressure pb to the critical pressure of an equivalent cyl-

indrical shell, of length I (the slant length of the cone) radius p (the mean radius of curvature of

the cone) and the same thickness h, Pth 3 , is plotted versus the taper ratio 0 -I - (RI/R 2), Pth

is essentially that computed by Niordson's method (Ref. 26), except that the critical pressure for the

equivalent cylindrical shell arrived at by the Niordson's analysis is obtained instead of by von Mises's

formula (Ref. 30), by a very close approximation to it, as discussed in Refs. 17 or 18.

The first series of tests is summarized in Table 5 and Fig. 14. If one compares Fig. 14 with Fig.

11 of Ref. 17, it is immediately apparent that the results are rather low. The mean of the experimental

points falls for both taper ratios about 20% below the theoretical curve. A possible cause for the con-

sistent poor results would be residual welding stresses, if compressive stresses of the order of 207. of

the theoretical buckling were found. Tests were carried out on two typical steel shells (311/14 and

411/4). 22 and 20 strain gages, respectively, were attached to the rolled shell prior to welding (at

each location, one on each side of the sheet, and both connected in series so as to measure only mer-
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brane stresses), and balanced. The shell was then welded in exactly the same manner as the regular

specimens, and finally after completion, the change Li strain was recorded. Circumferential residual

strains of 20-30 4 in./in. were recorded, which correspond to residual circumferential stresses of

500 to 800 psi. Compressive and tensile stresses appear, which vary and change signs rapidly along

a generator (due to the method of welding, in which a considerable number of tack welds preceeded the

continuous seam), but exhibit only slow ciranges along the circumference. More extensive testing and

strain gaging would be required to give good quantitative estimates of the welding stresses, but the

tests demonstrated very clearly the presence of residual compressive circumferential stresses of up to

25% and even 45% of the maximum critical buckling stress under external pressure, whose mean effect

may reduce the critical pressures by 157 to 25%, as observed. A similar test on an AG 5 aluminum

alloy specimen of double thickness (413) revealed similar magnitudes of residual strains, which how-

ever correspond to stresses that are less than 15% of the critical stresses. Smaller reductions in crit-

ical pressures of 5% to 107 should therefore result. These residual welding stresses appear, however,

to be also an important factor in the interpretation of the test results obtained with butt-welded alumi-

num alloy cones (Ref. 17).

As a further check on the cause of the low results for the steel cones (Fig. 15), strain gages were

attached to one specimen (311/14), and the theoretical buckling pressure which would appear for a

perfect conical shell was determined from the strain gage readings by the extension of Southwell's

method given for cylindrical shells in Ref. 31. The slope method suggested there was used, and yield-

ed a perfect cone buckling pressure of about 1.29 psi, 31% below the theoretical critical pressure.

Since even after the elimination of the effect of initial imperfections, a very low result is obtained,

the residual welding stresses appear indeed to be the prime cause of the reduced buckling pressures.

Hence, the welded steel specimens should not be relied upon for evaluation of the theory, un-

less one reduces the theoretical curve by about 20% on account of the existing prestress state, as is

shown by the dotted line in Fig. 15. The points of Fig. 15 are therefore not included in Fig. 17, which

compares various experimental results with theory.

The second series of bonded 2024-T3 Alclad specimens yielded much better results, as can

be seen in Table 6 and Fig. 16 (the mean of the repeated tests are presented in the figure). These
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tests revealed that the end conditions are of much greater importance for thin shells under external

pressure than is usually assumed. In most buckling experiments of cylindrical or conical shells the

end fixtures represent practically clamped ends, but the test results are compared with theories for

simple supports, based on the argument that due to the low bending stiffness of a thin shell the effect

of the boundary conditions on the buckling process is negligible. (For example, Ref. 19, 29, 35, 36).

Galletly, Slankard and Wenk (Ref. 36) tried to attain fully clamped boundary conditions but obtained

very good agreement with theories for simple supports. In the present tests the end fixtures were de-

signed to approach simple supports as far as possible; however, by tightening the bolts connecting

the end rings very much, partial clamping was achieved. This was done for 7 thin Alclad specimens

(421. and 321) for which repeated tests were easily carried out. In these tests the specimen was first

attached with simple supports, by minimum tightening of top and fixture bolts (tightening by fingers

only), and tested to the fully buckled state, and retested a number of times. Then the top end fixture

bolts were tightened appreciably and the test repeated with the top end partially clamped (seeTable 6).

The Alclad specimens had in general much lower out-of-roundness, and the onset of buckling

and complete buckling occurred simultaneously. The repeated tcsts of the same specimens, N;tlh sim-

ple supports, resulted in only a small scatter of the results (about 5%). The simple support behaviour

of the end fixtures was verified by the observed transfer of the slope of the buckling waves beyond

the fixture to the overlap of the cones.

The partial clamping of the top end, in the last part of each test, resulted in a mean increase of

18% in the buckling pressure. This demonstrates very clearly the importance of the boundary conditions

in the buckling process of conical shells under external pressure, even for v&y thin shells. Since the

tightening of the end fixture bolts was not kept under careful control during the tests of Ref. 17, this

may be one of the causes of the scatter of the results there.

The tests of the Alclad specimens reconfirm with more certainty the conclusions of Ref. 17 about

the validity of the theories of Singer (Ret, '' and Seide (Ref. 18). This is shown in Fig. 17 in which

the present results (except the steel cones of Table 5) are compared with those of Ref. 17, other tests

and theories. The theories are verified to the same extent as the classical linear theory for cylindrical

shells (Ref. 30). The older experiments which verified that theory so neatly (see, for example, Fig. 6

of Ref. 7) were for cylinders of small (R/h) ratios. More recent tests with much higher (R/h) ratios
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show a scatter of the same order as Fig. 17,(see Ref. 37, or Ref. 19).

The conclusions of Ref. 17 about the effect of the initial out-of-roundness, are reconfirmed here.

Since the critical stresses are very far from the yield stress, even for the steel specimen, and the spec-

imens have medium or high (p /h) ratios, the published results on cylindrical shells (Refs. 32- 34),

which are for very short shells of low (R/h) ratios, could not be applied. Examination of the pre-test

circularity contours (see for example Figs. 7 and 8), and their corresponding buckling behaviour, as in

Ref. 17, yielding similar observations, though for the thin, and fairly accurate, Alclad specimens the

out-of-roundness was found to have a more pronounced effect on the buckling pressure (for example,

shell 321/4 - see Table 6 and Fig. 16).

In Fig. 18 the plastic collapse pressures are plotted together with those obtained in Ref. 17.

The parametric form of Ref. 17 (h/p,) C versus Z is used,

where the non-dimensional parameters are

z - (I/p 2) (2.1)

and

C - [12 (1- V2)/f2] (p,/E) (1/h)2 (p /h) (2.2)

The steel cones of Table 5 are again not included, since also their plastic collapse pressures

were much below all others. This fact presents another indirect proof of the presence of the residual

stresses discussed above.

The averaging empirical formula of Ref. 17.

C - (p /) 0.090 (2.3)
p p a y

appears to apply also to the present results of Table 6, though it is slightly conservative.
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SECTION 3

EXPERIMENTAL INVESTIGATION OF THE BUCKLING OF CONICAL

SHELLS UNDER COMBINED TORSION AND EXTERNAL PRESSURE

Josef SingM
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INTRO DUCTIO N

Until very recently, no experimental data was available on the buckling of conical shells under

torsion except a few tests by Lundquist and Schuette on truncated cones having a cone angle of 11

degrees (Ref. 38). At Space Technology Laboratories (Ref. 19) a series of preliminary tests on steel

cones in torsion were recently carried out. These tests covered a (p /h) range of 867- 1500, with
Lw

cone angles of 300 and 600. The purpose of the present torsion tests was to provide more experimental

data for verification of the theory of Seide (Ref. 10) and of the present report, to extend the range of

genmetries, and to provide reference points for the tests under combined torsion and external pressure,

which formed the main purpose of the program. The torsion tests covered a (p /h) range of 320-
Lv

725, with cone angles of 300 and 400. The combined torsion and external pressure test covered a

(p /h) range of 256-725, again with cone angles of 300 and 400. 41 specimens were tested in the
ay

program reported in this section. Part of the specimens were made of annealed stainless steel Z 10

CNT 18, and the remainder of 2024-T 3 Alclad. The geometries are given in Table 3.

TEST APPARATUS AND PROCEDURE

The test rig for the experimental program of buckling under torsion and under combined torsion

and external pressure is shown in Figs. 4 & 5. It is an adaptiou of the pressure vessel used in pre-

vious tests. The conical shells are mounted as in the previous tests, but in order to ensure that the

applied load is pure torsion, the cone and torque arm float in a central bearing anchored to the bottom

of the vessel. Special care was taken during manufacture in centering this bearing with respect to the

top flange. The torque arm, which is overdesigned for extra stiffness, rides in its main bearing, at-

tached to the top flange, and the load is applied by a pair of jacks fed by a separate hydraulic system.

The jacks are attached to the side frames and apply the load via strain-gage load beams (load cells)

which are read continuously during the test.

As shown in Fig. 5 the end fittings are similar to those used in the earlier tests of Ref. 17, ex-

cept that the inner rings arc serrated to prevent slippage of the specimens. Also, for the cones with
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small lower end radius, the outer lower ring was replaced by an aluminum ring which has a straight

wedge profile, instead of the circular one with the 0-seal, used otherwise, This end fixture caused

more restraint, but was necessary to prevent slippage (note that a small radius results in very high

shear loads). In general, the end fixture bolts had to be tightened much more in the torsion, and tor-

sion plus external pressure tests, than previously. This removes the test conditions considerably

from the assumed simple supports, but is still further from the clamped boundary conditions than, for

example, the cast Cerrolow end attachment of Ref. 19.

The fitting and centering of specimens and the out-of-roundness measurements are similar to those

described in Section 2 and in Ref. 17. There, an additional circularity contour was obtained near the

small end of the cone, where the maximum shear stresses occur, and buckling commences. For torsion

tests, the torque is applied by the jacks by means of an hydraulic pump. The jack pressure is record-

ed for reference, but the actual force applied by the jacks to the arm is measured by the precalibrated

load beams which are read, via a switching and balancing unit, on an SR4 strain indicator. The angle

of twist is measured with a light ray from a scale reflected with a mirror (which is attached to the axis

of the cone) to a microscope. The torque is increased in small increments till buckling occurs. Buck-

ling appears very clearly on the microscope, as a sudden "running" of the scale, or even a strong

vibration of the image when the wave formation is very sudden and violent. Simultaneously, the SR4

indicator shows a sudden drop of torque, which is actually the most sensitive indication. "Puck"s

cannot be entirely relied upon here, since especially for the cones of large taper ratio (small lower end

radius), buckling occurs often "quietly", since it concentrates around the small end (see Fig. 19).

The tests under combined loading were carried out in two ways: (a) Going up to a predetermin-

ed pressure, and then keeping it constant while torque is applied till the shell buckles. (b) Similarly,

only with torque instead of pressure being kept constant. The two procedures yielded fairly close re-

suits, the difference being smaller than the experimental scatter in general, which indicates that linear

theory is applicable.

All the tests were continued beyond the point of buckling to obtain post-buckling curves (see for

example Fig. 21). The Alclad specimens "ere retested a number of times, but though the twisting de-

formation disappeared entirely upon release of lbads, the successive results were always slightly low-

er. This demonstrates the greater sensitivity of buckling in torsion to initial imperfections.
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The tests were usually continued well into the region of plastic deformations.

TORSION TESTS

The results of the pure torsion tests are given in Table 7, and are plotted and compared with

theory in Fig. 22.

The buckling behaviour of conical shells of small taper ratio (see Fig. 20) is very similar to that

of cylindrical shells. The waves cover most of the height of the cone and they resemble closely those

of a cylinder also in form. For conical shells of large taper ratio, the buckling waves concentrate en-

tirely near the small end (see Fig. 19), and their form differs.

In Fig. 22 the results of Table 7 are compared with theory. The critical torsion ratio, which is

the experimental critical torque divided by T, that of an equivalent cylinder for which

R -p
&v

L -l (3.1)

h -h

multiplied by cos 2 a. The curve plotted in Fig. 22 is based on Seide's theory (Ref. 10) and his

points (Table I of Ref. 10). The corresponding values of the 3 typical shells computed in Section 1

of this report are also included and they are practically identical.

The comparison (of Table 7 and Fig. 22) shows good agreement with linear theory. The average

discrepancy is 15%, with a maximum of 257. The results are slightly closer to theory than the explor-

atory tests of Ref. 19, though the ends here were clamped to a lesser degree.

The results verify the linear theories of Ref. 10 and Section 1 of this report. It should be noted,

however, that both theories are for simple supports, whereas in the tests, the ends were at least partly

clamped and at the lower end the effect may be considerable.

The present tests seem to indicate that the design value of 75% of linear results given in Ref.

19 could be raised to 80% of the linear results. But more tests are required to determine the de-
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sign factor with more certainty. A further series of torsion tests is in preparation.

The experimentally determined number of waves agrees fairly well with the theoretical estimates

(computed from the approximate curve of Ref. 10).

COMBINED TORSION AND EXTERNAL PRESSURE

The results of the combined torsion and external pressure tests are given in Table 8,
Since tie purpose ot these tests was to verify the theoretical interaction curves of Section 1,

and to provide data for empirical interaction curves, the measured pressures and maximum shear

stresses (actually torque were measured) were not compared with the theoretical values, but with the

mean of test results for pressure alone or torsion alone. In those cases where no appropriate experi-

mental results were available, the existing results were extrapolated, in accordance with Seide's ap-

proximate formulae of Ref. 18 and 10, from the nearest experimental point.

The theoretical anal, showed that the interaction curves for large taper ratio and small or

medium taper ratio differ considerably. The shells of taper ratio 0.843 are therefore plotted separately

in Fig. 24, and compared with the interaction curve for shell 421 computed in Section 1; whereas

those of taper ratio 0.600 are plotted in Fig. 25, and are compared there with the semi-empirical for-

mula of Ref. 13. In Section 1 it was shown that for conical shell 416 (of medium taper ratio) the inter-

action curve can be approximated closely by this formula, Eq. (1.61).

The experimental results verify both interaction curves reasonably well, though with some scatter

(more pronounced with the steel specimens). The different curve for the large taper ratio shells is

emphasized by the results.

Hence, complete families of interaction curves for the entire range of conical shells of large

taper ratio would be of value.



41

SECTION 4

BUCKLING OF CIRCULAR CONICAL SHELLS

UNDER UNIFORM AXIAL COMPRESSION

Josef Singer
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In Ref. 40 the axisymmetrical buckling of conical shells under axial compression was investigat-

ed. By setting Poisson's ration equal to zero (with the justification that buckling loads are usually

not sensitive to Poisson's ratio), the buckling load was found to be

.1.

Pcr = e YM cos
2 a = Yr2 Eh2/[3 (1 - V)21 c0s 2 a ... (4.1)

1 In Ref. 41 the buckling under axial compression and external or internal uniform hydrostatic pres-

sure was analysed without prescribing axisymmetry. For the case of axial compression and internal

pressure the axisymmetrical buckling mode predominates, whereas for axial and external pressure the

more general mode with many lobes along the circumference is critical. Buckling loads for axial com-

pression only were not computed in this analysis on account of the very poor convergence of the stabili-

ty determinant for zero external (or internal) pressure. For this case, the approximation of Eq. (4.1) was

assumed to hold, since some spot calculations indicated it to be sufficiently accurate. Both Refs. 40

and 41 assume simple supports defined by the geometric (essential) boundary conditions

w cos a-u sin a = 0

v , 0 at x = 1, x2  ... (4.2)

representing bulkheads which are rigid in a plane perpendicular to the axis and very flexible in the axial

direction; whereas in this report the usual simple support conditions for conical shells are assumed,

which are defined (as for cylindrical shells) by the geometric boundary conditions

w =0

v .0 at x = 1, x2  .(4.3)

and represent bulkheads which are rigid in the radial direction and very flexible in the direction of the

generators. (Both definitions imply the natural boundary conditions of free rotation of generators about

the edges, and freedom from restraint in the direction of the axis, or the generators, respectively).
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The method of Ref. 1 is therefore extended and applied to the analysis of buckling under uniform

axial compression. As mentioned in Section 1, this method of solution implies elastic restraints which

approximate the condition of v = 0 very closely, and also the effect of the u restraint has been

found to be practically negligible in the case of external pressure and torsion. In Ref. 42, the effect of

axial constraint of the instability of circular cylindrical shells under uniform axial compression was

shown to be even smaller than in the cases of external pressure loading, and hence its effect can also

be neglected here.

The membrane stresses in the case of uniform axial compression are

U. -(P/2frhax sin acos a)

a

W 0o
F- 0 ... (4.4)

Now, assuming again that for the buckling analysis the prebuckling stress is represented satis-

factorily by the membrane stresses, Eqs. (4.4), the modified third stability equation, Eq. (1.9), becomes

K4

(1/x2 sin 2 a) H2 (w) + (P/E) (l/2nh a x sina cosa) w

+(1/x3)K4cos2a [(x3 w.) ] = 0 (4.5)

Substitution of the solution of Ref. 1 in Eq. (4.5), and evaluation by the Galerkin method as in Ref. 1,

yields after some manipulations

2y-2
+C S(n,m) , C C , 2 [(-1)G + x2  - 1GG (n,m)

m.n 2y
whr cos2 a [(_1 ) ar ai given + [41 (l) +6 o Rf I ( m) are 0p e (

where G1 (n, i) and G2 (n, m) are again given by Eqs. [64] to [663 of Ref. 1 (which are repeated for
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convenience in Appendix A)

m+n m -n
G, (n,m) - K, (n) [ 2 2 + 22

(2 y- 1) +(m+n) /3 (2 y- 1)2 +(m-n) 2 /3

1 1+K4 (n) [ 22 2 2 2 21 (4.7)( 2 y- 1)2 +(m+n) 2 /3 ( 2 y- 1) +(m-n) 2 2

2
K, (n) - n 3 (2 y- l) (4.8)

4 (n) - (2y- 1) [(y' -y)-a/ ]2  (4.9)

and

j7 - (P/E) (K 4/2,rh a sin a cos a) (4.10)

As in Ref. 1. N linear equations are obtained for an N term solution, and the lowest eigenvalue

q of the determinant of the coefficients of C yields the buckling load. However, it should be noted

that whereas in the case of buckling under external pressure (Ref. 1) n = I is always the basic mode

(which consists of one half wave in the axial direction), here the value of n of the basic mode is de-

termined by the geometry of the shell, and is usually larger than unity, except for very short shells.

The practical criterion for the buckling load becomes therefore instead of Eqs. (4.6)

N
I C S (n,m) =

m+n 2y-2 K4 l2M+ 2y
Ca I[(-I) X2  -1] G1 (n,m)+ cos 2 a[(- 2 - G2 (n,m)

+[_)m+n 2Y--l]Gs(nm) -0 ... (4.11)

where n, is the number of half waves in the axial direction of the basic mode. The correct value of

n, is that which yields the minimum n/ in the one term solution of Eq. (4.11). An (N-nb + 1) term

solution then yields, as before, (N - n. + 1) linear equations, and the buckling load is found from the
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(N-nb + 1) th order determinant of the coefficients of c. It should be remembered, that as in the

case of external pressure, the integral value of t (the number of circumferential waves) which yields

the minimum buckling load must be used in the calculations.

The critical load was calculated for a typical shell, Shell (a) of Fig. 2, by 1, 2, 3 and 4 term

solutions and compared with the approximate axisymmetric solution of Eq. (4.1). The results are

tabulated in Table 9.

T A B L E 9

CRITICAL LOAD FOR TYPICAL CONICAL SHELL UNDER UNIFORM AXIAL COMPRESSION

Material : Steel E - 30 x 106 psi, v- 0.3

Typical 0Taper (P,,/E) x 103 (PC /E)Shpill a°  12 ato p~ /h(P/E A
Shell Ratio 1 term 2 term 3 term 4 term xisymmetric

(a) 300 1.50 0.333 831 28.76 28.53 28.33 28.25 28.52

The asymmetrical buckling load is indeed very slightly below the axisymmetric one in this

example.

The instability behaviour of thin conical shells, under axial compression, within the bounds of

linear theory, is similar to that of cylindrical shells. 'I lie disagreement of the predictions of linear

theory with experimental results is also similar (see Refs. 19 and 43). Hence the linear analysis has

practical value only in cases of combined loading.
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A P P E N D I X A

DEFINITIONS OF FUNCTIONS G,, G2 AND G3

The general expressions of the G function are

m t n + r-nG (n,)m) = F (n) 2 + (m + X '/3 + 4 (y- 1) + (m-n)/3'

+F (n) [ 1 1 (A 1)

2 
4 (y - 1)2 + (m+n) 9 4(y - ) + (m-,1)

G (n, m) = F (n) [ m +n0 + m-n

4y" + (m +n) 2 / 4y" + (m-n)

+F (n) [ 1 1 22 (A2)
4yz + (m +n) / 4y 2 + (m-n)a

G (n, m) = F. (n) [ m +.. .n + m- n ]
(2y +1) 1 + (m +n) 2 02 (2 y + l)2 +.(m - n) 23

+F (n) [ 2 I 1

S (2y + 1) +(m + n)" p2 (2y +1)2 +(m -n) 3 (A 3)

where

F, (n) 4n )92 I[(y -3y + 2y) - n2a (y - 1)] -(t/sin
2 a)( y - 1)1 (A 4)

Fa(n) 2 (y-I) I[(y 4 -4y" + 4 y') - n2 /92 (6y'- 1 2 y+4)+n'4 
t4

- 2(t0/sin2 a) [(y - 2 y + 2) - n 2321 + (t'/sin4 a) l (A 5)

F a(n)= [2+V 2 /(U 2- V 2 )] I sin 2 a [(-y" 2y' - 1)-_ n, /32 2(y'+ 1)+ n /3 (-l

-2t 2  (3,4 + 2y2 - 1) - n 32  ( y -2 +1)n 4. n 1

+ t 4/sin' a) _(
2

- 1) - n /32 (2)1I (A 6)
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U a+ V2 = sin"a([(y' -1) 4_n 2Sa 4 (-yO +y4 yR_1 + n 4 34(6 y4 +4y' + 6)

-DGP64(-y2 - + no a

-4t2sin2a
[ (ye -Y 4 _y2 + ) - n2 4 y(_y4+Oy2 )_ ) + n4P4 ( _ y l 1) -n3]
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4 f(6y

4 +4y
2 +6) - 11224(y2 +1) + n4/3' (6)]
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(A 7)
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F. (n) = n [2y + )/2  (A 9)

and

F* (n) = [(2y + 1)/21 H[(y' + y) - " ] - 2 (t2/sin a)I (A 10)
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Fig. 4. Test Setup for Combined Torsion and External Pressure Leading.
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Fig. 6. Device for Measurement of
Out-of. Roundness.

Fig. 9. Typical Specimens -Stos

Fi.10. Typical Specimens -Aidl



Fig. 11. Typical Buckle Pattern in Fully Buckled State, Fig. 12. Typical Buckile Pattern at Plastic Collapse,
Resulting from External Pressure Loading (seen Resulting from External Pressure Loading.
from above) -Steel Specimen 311/10. Same Shell as In Fig. 11 -311/10.

Fig. 13. Typical Buckle Pattern in Fully Buckled State, Fig. 14. Typical Buckle Pattern at Plastic Collapse, Resulting
Resulting from External Pressure Loading (seen from External Pressure Loading (seen from above).
from above) - Alciad Specimen 421/5. Same Shell as In Fig. 13 - 421/5.
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Fig. 19. Typical Buckle Pattern for Conical Shell of Fig. 20. Typical Buckle Pattern for Conical Shell of
Large Taper Ratio in Torsion (Plastic De- Small Toper Ratio (Plastic Deformation Re-
formation Remaining After Removal from maining After Removal from Test Rig) -

Test Rig) - Alclad, Specimen 321/6. Steel Specimen 417/6.

Fig. 23. Typical Buckle Pattern for Conical Shell Under
Combined Torsion and External Pressure (Plas-

tic Deformation Remaining After Removal from
Test Rig) - Ailclad, Specimen 421/9.
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